If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=5b+104
We move all terms to the left:
b^2-(5b+104)=0
We get rid of parentheses
b^2-5b-104=0
a = 1; b = -5; c = -104;
Δ = b2-4ac
Δ = -52-4·1·(-104)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-21}{2*1}=\frac{-16}{2} =-8 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+21}{2*1}=\frac{26}{2} =13 $
| 56x=-7x | | 2.5-(8)=x | | 10=3a+12a | | 25=150-x | | 9(x-5=8(x+5 | | X+45=x-15 | | 9(x-5=8(x=5 | | -8p+8=-7 | | X+45=x-15=x | | 5g−4g= | | 5g−4=12 | | 4n-8=76 | | 24=x-22 | | 3x(x+2)=48 | | 4x+5x=6x+11 | | x+39=110 | | 20*4x=32 | | (52)p=512 | | -9+9u=8u | | X-7=4x+28 | | 11x-32=26 | | 5g−4g=12 | | 8j−7j=16 | | 3.4x-2.1=545 | | 128=x+73 | | 450/15=x/20 | | 3-(1/5)x=-7 | | k2−16k−17=0 | | 30=x+-20 | | x-13=-44 | | 10-x=54 | | y=-10(0)+6 |